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Abstract

This paper illustrates the use of a pair of piezoelectric layers in increasing the flutter and buckling capacity of a

column subjected to a follower force. The column is fixed at one end while the other one is free to rotate but constrained

transversely by a spring. The mathematical formulation is presented and solved numerically. The effect of the spring

stiffness on the capacity and type of instability of the column is first illustrated numerically for the case without any

piezoelectric actuators. A transition value for the stiffness can be identified, below which the column fails by flutter and

above which the column buckles. Next, an external voltage is applied on the piezoelectric layers bonded on the surfaces

of the column, which induces locally a pair of tensile follower force. This has the effect of increasing the capacity of the

column as the voltage increases while the transition stiffness remains virtually unchanged for a given size and location of

piezoelectric actuators. It is also shown that the capacity of the column increases with longer layers for a fixed voltage.

However, the location of the layers along the column determines the transition stiffness and hence has an effect on the

type of failure for a fixed spring constant. Positioning towards the fixed end increases the flutter capacity whereas

positioning away will result in an increase in buckling capacity.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Flutter and buckling are the two main forms of instability of column structures. The mathematical
solution for the buckling analysis of columns under different boundary conditions subjected to non-fol-
lower compression is well documented in the monograph by Timoshenko and Gere (1961). A non-follower
force is usually referred as an axial force with its direction remaining constant during the deformation of the
structure. Buckling of a column is referred as the change of its equilibrium state from one configuration to
another at a critical compressive load. On the other hand, flutter refers to the phenomenon where the
amplitude of vibration of the column due to an initial disturbance grows without limit.
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A classical problem attracting considerable interests was the stability of a column fully fixed at one end
and subjected to a tangential compressive (or follower) force at the other free end (Bolotin, 1963). A follower
force is different from the non-follower force mentioned above in the sense that the direction of this type of
force remains tangent to the deflection curve at the top of the column. Feodos’ev (1953) and Pfluger (1950)
could not find any forms of equilibrium close to the undeformed position and concluded erroneously that a
column under a follower force is always stable. It is Beck (1952) who first solved this instability problem
based on dynamic analysis. The flutter of column under a follower force is usually referred as problem of
Beck’s column and this problem has been received considerable interests and development. Hauger and
Vetter (1976) studied the influence of Winkler’s elastic foundation on the stability of Beck’s column. The
influence of a pulsating force was investigated by Atanackvic and Cveticanin (1994) while the optimal shape
of Beck’s column was solved by Hanaoka and Washizu (1979). Matsuda et al. (1993) analyzed the effect of
variable cross-section and shear stress on the value of the critical force. It is well-known that the buckling
capacity of a propped cantilever is p ¼ p2EI=ð0:699LÞ2 � 2:045p2EI=L2 both for follower compression and
non-follower compression force (Timoshenko and Gere, 1961; Beck, 1952). Kounadis (1983) studied the
mathematical solution to the case of a column fixed at one end and constrained by a linear spring with
stiffness k at the other end. It is shown that if k is low, the column will fail by flutter whereas above a
transition value, buckling failure will occur.

The applications of the smart materials in engineering structures have drawn serious attention recently.
Loughlan (1996) attempted to maintain the original shape of structures in order to avoid buckling and the
subsequent adverse effect of post-buckling behaviour using shape memory alloys (SMA). Although SMA is
capable of actuating a significant force, its slow response time hinders its usage in certain circumstances.
On the other hand, the piezoelectric materials are light and able to provide rapid response through elec-
tromechanical coupling. Such materials have been studied in varied applications such as shape control of
structures, acoustic wave excitation and structural health monitoring (Milsom et al., 1977; Monkhouse
et al., 2000; Morgan, 1998). However, the research on using piezoelectric materials to enhance the stability
of structures has not attracted much attention from the scientific community.

Chandrashekhara and Bhatia (1993) developed a finite element model for the active buckling control of
laminated composite plates with surface bonded or embedded piezoelectric sensors that are either con-
tinuous or segmented. The dynamic buckling behaviour of the laminated plate subjected to a linearly in-
creasing compression load is investigated in their work. Chase and Bhashyam (1999) derived optimal design
equations to actively stabilize laminated plates loaded above the critical buckling load using a large number
of sensors and actuators. Such work finds applications in aircraft wing skins. Meressi and Paden (1993)
showed that the buckling of a flexible beam could be postponed beyond the first critical load by means of
feedback using piezoelectric actuators and strain gauges. The problem of spill over was also discussed.
Thompson and Loughlan (1995) studied experimentally the potential to increase the load bearing strength
of imperfection sensitive composite columns loaded in compression. The concept is to apply a controlled
voltage to the actuators to induce a reactive moment at the column centre with the aim of removing the
lateral deflections and force the column to behave in a perfectly straight manner. The use of piezoelectric
layers to induce tensile forces on the host column in enhancing the buckling capacity of the latter under a
non-follower force has been mathematically formulated and analyzed by Wang (2002). The effects of the
location and size of the piezoelectric layers on the enhancement are studied.

The enhancement of Beck’s column (associated with the flutter phenomenon of a cantilever under a
follower force) using piezoelectric layers has not been previously presented. This paper deals with the flutter
and buckling enhancement of a column, fixed at one end and constrained elastically at the other end,
subjected to a follower force using a pair of piezoelectric layers. The mathematical formulation is first
presented and then solved numerically to illustrate the effect of parameters such as applied voltage, length
and position of actuators and the spring stiffness. The influence of these parameters on the amount of
strength enhancement and the transition between flutter and buckling instability is discussed.
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2. Problem description

Fig. 1 shows a column with width b, thickness h, length L, density q and isotropic with Young’s modulus
E that has a pair of piezoelectric patches bonded on its surfaces. Each piezoelectric layer has thickness
h1, density q0, Young’s modulus Ep and equivalent piezoelectric coefficient for one-dimensional problem
�ee31. Let x denotes the coordinate along the length of the column with its origin at the left end, and wðxÞ
the deflection of the beam, defined to be positive downward. The piezoelectric layers are located from
x ¼ L1 to L2. The column is fixed at x ¼ 0 and constrained transversely by a spring with stiffness coefficient
k at x ¼ L.

For buckling problems, L=h is usually large and the effects of shear deformation and rotary inertia may
be neglected. Therefore, the displacement field of the column is written as

uxðx; tÞ ¼ �z
owðx; tÞ

ox
; ð1Þ

where wðx; tÞ and uxðx; tÞ are the displacements in the transverse z-direction and longitudinal x-direction,
respectively. The amplitude of the strain ex, stress rx, and the moment Mx in the column due to w are given
by

ex ¼ �z
o2w
ox2

; ð2Þ

rx ¼ �Ez
o2w
ox2

; ð3Þ

Mx ¼
Z h

2

�h
2

zrx dz ¼ �EI
o2w
ox2

; ð4Þ

where I ¼ ð1=12Þbh3.

Fig. 1. Column with a pair of piezoelectric layers under follower force.
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The stress in the piezoelectric layer accounting for electro-mechanical effects can be expressed as
(Crawley and de Luis, 1987)

�rrx ¼ �Epz
o2w
ox2

� �ee31Ez; ð5Þ

where the over-bar represents the variations in the piezoelectric layer and Ez is the electric field in the pi-
ezoelectric layer. The stress given by the first term on the right hand side of Eq. (5) results in a moment �MMx

on the column induced by w and can be approximately expressed as

�MMx ¼ �Ephbh1
h
2

�
þ h1

�
o2w
ox2

: ð6Þ

If the piezoelectric layers are placed symmetrically and poled in the transverse direction of the column, then
applying equal voltages V to the upper and lower piezoelectric layers will induce tensile mechanical stresses
on the column if complete bonding is assumed, as pointed out by Crawley and de Luis (1987). This stress is
given by the second term on the right hand side of Eq. (5) and effect in concentrated tensile forces at x ¼ L1

and L2, each given by

F ¼ �2bh1Ez�ee31 ¼ �2b�ee31V ; ð7Þ
where Ez ¼ V =h1. Such tensile force induced by the piezoelectric layer may be used to enhance the flutter
and buckling of the column subjected to a compressive follower force P at x ¼ L.

3. Mathematical model for flutter and buckling analysis of enhanced column

For clarity, the column is considered to comprise three parts with the deflections denoted by w1ðxÞ for
06 x6 L1, w2ðxÞ for L1 6 x6 L2 and w3ðxÞ for L2 6 x6L. The governing equations for the column subjected
to a follower force can be expressed as

EI
o4w1

ox4
þ P

o2w1

ox2
þ qbh

o2w1

ot2
¼ 0; ð8Þ

EIð Þ0 o
4w2

ox4
þ Pð � F Þ o

2w2

ox2
þ qbhð þ 2q0bh1Þ

o2w2

ot2
¼ 0; ð9Þ

EI
o4w3

ox4
þ P

o2w3

ox2
þ qbh

o2w3

ot2
¼ 0; ð10Þ

where EIð Þ0 ¼ EI þ Ephbh1 ðh=2Þ þ h1ð Þ.
The general solution of Eqs. (8)–(10) can be written as

wjðx; tÞ ¼ WjðxÞeixt j ¼ 1; 2; 3; ð11Þ
where WjðxÞ is the admissible shape vibrating at the circular frequency x of the column. Substituting Eq.
(11) into Eqs. (8)–(10) yields the governing equation for WjðxÞ

EI
d4W1

dx4
þ P

d2W1

dx2
� qbhx2W1 ¼ 0; ð12Þ

EIð Þ0 d
4W2

dx4
þ Pð � F Þ d

2W2

dx2
� qbh
�

þ 2q0bh1
�
x2W2 ¼ 0; ð13Þ

EI
d4W3

dx4
þ P

d2W3

dx2
� qbhx2W3 ¼ 0: ð14Þ
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The solutions for W1 and W3 are given by

W1ðxÞ ¼ A1 cos k1xþ A2 sin k1xþ A3 cosh k2xþ A4 sinh k2x; ð15Þ

W3ðxÞ ¼ C1 cos k1xþ C2 sin k1xþ C3 cosh k2xþ C4 sinh k2x; ð16Þ

where k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ k4=4
� �1=2 þ k2=2

q
, k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ k4=4
� �1=2 � k2=2

q
, k2 ¼ P=EI and l2 ¼ qbhx2=EI . The so-

lution for W2 depends on the relative magnitude between P and F, and is found to be

W2ðxÞ ¼ B1 cos �kk1xþ B2 sin �kk1xþ B3 cosh �kk2xþ B4 sinh �kk2x when P P F ; ð17Þ

W2ðxÞ ¼ B1 cosh �kk1xþ B2 sinh �kk1xþ B3 cos �kk2xþ B4 sin �kk2x when P < F ; ð18Þ

where �kk1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ll2 þ �kk4=4

� �1=2 þ �kk2=2

q
, �kk2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ll2 þ �kk4=4

� �1=2 � �kk2=2

q
, �kk2 ¼ P � F =ðEIÞ0 and �ll2 ¼ ðqbhþ

2q0bh1Þx2=ðEIÞ0.
The flutter and buckling capacities of the piezoelectric-enhanced column can be obtained using the

condition for the non-trivial solution for the deflection (or equivalently Ai, Bi and Ci, i ¼ 1; 2; 3; 4) after
imposing the boundary conditions.

4. Analytical solution for flutter and buckling capacity of enhanced column

For the column of Fig. 1, there are four boundary and eight continuity conditions. At x ¼ 0, the fixed
end condition translates to

W1jx¼0 ¼ 0
dW1

dx

����
x¼0

¼ 0; ð19Þ

whereas at x ¼ L, the vertical spring constraint implies that

d2W3

dx2

����
x¼L

¼ 0
d3W3

dx3

����
x¼L

� f2

L3
W3jx¼L ¼ 0; ð20Þ

where f2 ¼ kL3=EI . The continuity conditions for the three segments can be written as follows. At x ¼ L1,

W1jx¼L1
¼ W2jx¼L1

dW1

dx

����
x¼L1

¼ dW2

dx

����
x¼L1

d2W1

dx2

����
x¼L1

¼ d2W2

dx2

����
x¼L1

d3W1

dx3

����
x¼L1

¼ d3W2

dx3

����
x¼L1

ð21Þ

and at x ¼ L2,

W2jx¼L2
¼ W3jx¼L2

dW2

dx

����
x¼L2

¼ dW3

dx

����
x¼L2

d2W2

dx2

����
x¼L2

¼ d2W3

dx2

����
x¼L2

d3W2

dx3

����
x¼L2

¼ d3W3

dx3

����
x¼L2

:

ð22Þ

Substituting Eqs. (15)–(18) into the 12 conditions given in Eqs. (19)–(22) leads to a set of twelve homog-
enous equations, which can be expressed in the following form
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r11 r13
r22 r24

r39 r3;10 r3;11 r3;12
r49 r4;10 r4;11 r4;12

r51 r52 r53 r54 r55 r56 r57 r58
r61 r62 r63 r64 r65 r66 r67 r68
r71 r72 r73 r74 r75 r76 r77 r78
r81 r82 r83 r84 r85 r86 r87 r88

r95 r96 r97 r98 r99 r9;10 r9;11 r9;12
r10;5 r10;6 r10;7 r10;8 r10;9 r10;10 r10;11 r10;12
r11;5 r11;6 r11;7 r11;8 r11;9 r11;10 r11;11 r11;12
r12;5 r12;6 r12;7 r12;8 r12;9 r12;10 r12;11 r12;12

2
6666666666666666664

3
7777777777777777775

A1

A2

A3

A4

B1

B2

B3

B4

C1

C2

C3

C4

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

¼ R½ 


A1

A2

A3

A4

B1

B2

B3

B4

C1

C2

C3

C4

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

¼

0
0
0
0
0
0
0
0
0
0
0
0

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

for P P F ; ð23aÞ

r11 r13
r22 r24

r39 r3;10 r3;11 r3;12
r49 r4;10 r4;11 r4;12

r51 r52 r53 r54 �rr55 �rr56 �rr57 �rr58
r61 r62 r63 r64 �rr65 �rr66 �rr67 �rr68
r71 r72 r73 r74 �rr75 �rr76 �rr77 �rr78
r81 r82 r83 r84 �rr85 �rr86 �rr87 �rr88

�rr95 �rr96 �rr97 �rr98 r99 r9;10 r9;11 r9;12
�rr10;5 �rr10;6 �rr10;7 �rr10;8 r10;9 r10;10 r10;11 r10;12
�rr11;5 �rr11;6 �rr11;7 �rr11;8 r11;9 r11;10 r11;11 r11;12
�rr12;5 �rr12;6 �rr12;7 �rr12;8 r12;9 r12;10 r12;11 r12;12

2
666666666666666664

3
777777777777777775

A1

A2

A3

A4

B1

B2

B3

B4

C1

C2

C3

C4

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

¼ �RR½ 


A1

A2

A3

A4

B1

B2

B3

B4

C1

C2

C3

C4

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

¼

0
0
0
0
0
0
0
0
0
0
0
0

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

for P < F ; ð23bÞ
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where rij (i ¼ 1; 2; . . . ; 12; j ¼ 1; 2; . . . ; 12) and �rrkl (k ¼ 5; 6; . . . ; 12; l ¼ 5; 6; 7; 8) are listed in the appendix,
and all the unfilled places in the above matrices indicate the value of zero.

For non-trivial solution of the vector A1; . . . ;A4;B1; . . . ;B4;C1; . . . ;C4ð ÞT, the following conditions are
imposed

det½R
 ¼ 0 for P P F ; ð24aÞ

det½�RR
 ¼ 0 for P < F : ð24bÞ
Theoretically, this will give the vibration frequencies of the system. The load at which the fundamental

frequency is zero corresponds to the buckling capacity whereas the load at which the first two frequencies
are equal gives the flutter capacity. These capacities can be obtained numerically as follows. For a given
piezoelectric material and applied voltage V, the tensile force F induced on the column by the piezoelectric
layers can be computed using Eq. (7). For prescribed values of L1, L2 and follower force P, the first two
resonant frequencies x1 and x2 are numerically estimated using Eq. (24a) or Eq. (24b). By varying P, set of
values for x1 and x2 are computed and plotted, from which the flutter and buckling capacity of the column
can be deduced. The effectiveness of the piezoelectric layer in enhancing the flutter and buckling capacity in
the column can be demonstrated by changing V, L1 and L2.

5. Numerical simulation and discussions

As an illustration, a steel column with PZT-4 piezoelectric actuator attached is considered with the
geometric and material constants listed in Table 1. The results are presented in non-dimensional form
where the non-dimensional frequency of the column, the compressive follower force, the tensile force
induced by the piezoelectric layer and the spring constant are defined as follows: �xx ¼ qbhx2L4=EI , �PP ¼
P=Pcr, �FF ¼ F =Pcr, and f2 ¼ kL3=EI , where Pcr ¼ p2EI=L2 is the Euler buckling load of the original column.
Note that f2 ¼ 0 corresponds to a free standing column whereas f2 ! 1 is for a column propped at one end.

First, consider the case of a column with �FF ¼ 0 and h1 ¼ 0, implying that no piezoelectric layer is at-
tached. The two extreme cases of f2 ¼ 0 and f2 ! 1 under the action of P can be solved, giving the column
capacity of �PP ¼ 2:035 and 2.040 respectively. These values compare well with the values of �PP ¼ 2:034 and
2.045 respectively provided by Timoshenko and Gere (1961). For other values of f2, the variations of the first
two frequencies of the column x1 and x2 with P are plotted in Fig. 2. For f2 < 36, it is found that x1 and x2

Table 1

Geometrical and material properties of column and the piezoelectric layer

Column Piezoelectric layer

Length (m) 1.0 –

Width (m) 0.08 0.08

Height (m) 0.002 0.0001

Young’s modulus (N/m2) 78:0
 109 –

Poisson’s ratio 0.29 0.30

Mass density (kg/m3) 7800 7500

e31 (C/m2) – �4.1

e33 (C/m2) – 14.1

�ee31 (C/m2) – �9.29

c11 (N/m2) – 13:2
 109

c33 (N/m2) – 11:5
 109

c12 (N/m2) – 7:1
 109

c13 (N/m2) – 7:3
 109

Ep (N/m2) – 78.6
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approach each other without passing through zero, as shown in Fig. 2(a) indicating that the column flutters
but does not buckle. For higher values of f2, the beam buckles first (i.e. frequency approaches zero first), as
shown in Fig. 2(b). This trend is reasonable because when the free end is under some restraint, there is lesser
tendency to flutter. The values of P at whichx1 first reaches zero or equals tox2 as P is increased for different
f2 are plotted in Fig. 3, indicating that a transition value of f2 � 36, below which the beam flutters and above
which the beam buckles. It can be seen that the drop in the capacity of the column just after the transit point
is steep, from flutter to buckling. These results agree with those in Kounadis (1983).

For the case where the piezoelectric layers are attached with L1 ¼ 0:1 m and L2 ¼ 0:9 m, the capacity of
the column with external voltage applied under different degree of restraint are plotted in Fig. 4. Fig. 4(a)

Fig. 2. (a) First two resonant frequencies versus follower force. (b) First resonant frequency versus follower force.
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shows the increase in both flutter and buckling strength of the column as the applied voltage is increased
from 0 to 50V. Fig. 4(b) indicates that the percentage increase with respect to a column without piezoelectric
layers ranges from about 12% to 45%.Without external voltages, the piezoelectric layers increase the stiffness
of the column locally and contribute about 12% to the strength increase. Hence, the electromechanical effect
of the piezoelectric layer can be substantial when external voltages are applied to the layer.

As an indication of the size effect, the capacity of the column for three lengths of the piezoelectric layers,
namely L2 ¼ 0:3 m, L2 ¼ 0:7 m, and L2 ¼ 0:9 m, are plotted in Fig. 5, for L1 fixed at 0.1 m. As expected, the
capacity increases with size but the flutter capacity does not vary much from L2 ¼ 0:7 to 0.9 m. This is
because increasing the stiffness of the column through the piezoelectric layers near the free end is less effective
than increasing at the fixed end against flutter while the opposite can be said with respect to buckling.

This is further illustrated by fixing the actuator length (0.4 m) and changing the position, where the
values for L1 ¼ 0:2 m and L1 ¼ 0:5 m are plotted in Fig. 6(a) for external voltage of 30 V. The case without
actuator is also plotted for comparison purpose. It can be seen that placing the actuator towards the right
increases the buckling capacity significantly (by 51%). Placing the actuator towards the left increases the
flutter load by 23%.

The effect of position on the transition value of f2 is also illustrated, where the value decreases when the
actuator is placed more towards the fixed end. Hence, for f2 ¼ 36 (corresponding to the transition value of
the column without actuator), depending on where the piezoelectric layers are attached, the column can
either buckle or fail by flutter. This is also illustrated in Fig. 6(b) in which the variations of the first two
frequencies are calculated for f2 ¼ 36.

As a further illustration of the above effects, the results for the cases of L1 ¼ 0:5 m and L2 ¼ 0:9 m, and
L1 ¼ 0:1 m and L2 ¼ 0:9 m are plotted in Fig. 7(a). The longer layer does not produce significant increase in
the buckling capacity but significantly increase the flutter load by virtual of its position. In addition, the
relative position of the transition point is consistent with the earlier discussion. The transition between
the form of instability for f2 ¼ 39 is illustrated by the variation of the first two frequencies plotted in
Fig. 7(b).

Fig. 3. Flutter and buckling capacity of column versus spring stiffness.
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6. Concluding remarks

By presenting the mathematical formulation and numerical solution of the flutter and buckling analysis,
the effectiveness of a pair of surface-bonded piezoelectric patches to enhance the capacity of a column
subjected to a follower force is illustrated. The solution is first validated for the case of a virgin column. It is
shown that the degree of transverse restraint at the free end determines the form of instability. The presence

Fig. 4. (a) Flutter and buckling capacity of column at different voltages when L1 ¼ 0:1 and L2 ¼ 0:9. (b) The percentage increase in

flutter and buckling capacity of column.
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of the piezoelectric layers not only increases the strength of the column but can also alter the form of
instability. Whilst longer layers lead to higher capacity in general, placing the actuators towards the fixed
end is more effective in increasing the flutter capacity whilst placing them away from the fixed end results in
a substantial increase in the buckling capacity. Hence, in view of the steep drop in capacity at the transition
stiffness, the results of this study show the importance of proper placement of piezoelectric patches to
ensure optimal strength enhancement.

Acknowledgements

The authors are grateful to the reviewers for their constructive comments.

Appendix A. Elements of the matrix

r11 ¼ 1; r13 ¼ 1; r22 ¼ k1; r24 ¼ k2;

r39 ¼ �k21 cos k1L; r3;10 ¼ �k21 sin k1L; r3;11 ¼ k22 cosh k2L; r3;12 ¼ k22 sinh k2L;

r4;9 ¼ k31 sin k1L� f2

L3
cos k1L; r4;10 ¼ �k31 cos k1L� f2

L3
sin k1L;

r4;11 ¼ k32 sinh k2L� f2

L3
cosh k2L; r4;12 ¼ k32 cosh k2L� f2

L3
sinh k2L;

r51 ¼ cos k1L1; r52 ¼ sin k1L1; r53 ¼ cosh k2L1; r54 ¼ sinh k2L1;

r55 ¼ � cos �kk1L1; r56 ¼ � sin �kk1L1; r57 ¼ � cosh �kk2L1; r58 ¼ � sinh �kk2L1;

r61 ¼ �k1 sin k1L1; r62 ¼ k1 cos k1L1; r63 ¼ k2 sinh k2L1; r64 ¼ k2 cosh k2L1; r65 ¼ �kk1 sin �kk1L1;

r66 ¼ ��kk1 cos �kk1L1; r67 ¼ ��kk2 sinh �kk2L1; r68 ¼ ��kk2 cosh �kk2L1;

Fig. 5. Flutter and buckling capacity of column for different sizes of piezoelectric layer at V ¼ 30.
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r71 ¼ �k21 cos k1L1; r72 ¼ �k21 sin k1L1; r73 ¼ k22 cosh k2L1; r74 ¼ k22 sinh k2L1;

r75 ¼ �kk21 cos �kk1L1; r76 ¼ �kk21 sin �kk1L1; r77 ¼ ��kk22 cosh �kk2L1; r78 ¼ ��kk22 sinh �kk2L1;

r81 ¼ k31 sin k1L1; r82 ¼ �k31 cos k1L1; r83 ¼ k32 sinh k2L1; r84 ¼ k32 cosh k2L1;

r85 ¼ ��kk31 sin �kk1L1; r86 ¼ �kk31 cos �kk1L1; r87 ¼ ��kk32 sinh �kk2L1; r88 ¼ ��kk32 cosh �kk2L1;

r95 ¼ � cos �kk1L2; r96 ¼ � sin �kk1L2; r97 ¼ � cosh �kk2L2; r98 ¼ � sinh �kk2L2;

r99 ¼ cos k1L2; r9;10 ¼ sin k1L2; r9;11 ¼ cosh k2L2; r9;12 ¼ sinh k2L2;

r10;5 ¼ �kk1 sin �kk1L2; r10;6 ¼ ��kk1 cos �kk1L2; r10;7 ¼ ��kk2 sinh �kk2L2; r10;8 ¼ ��kk2 cosh �kk2L2;

r10;9 ¼ �k1 sin k1L2; r10;10 ¼ k1 cos k1L2; r10;11 ¼ k2 sinh k2L2; r10;12 ¼ k2 cosh k2L2;

r11;5 ¼ �kk21 cos �kk1L2; r11;6 ¼ �kk21 sin �kk1L2; r11;7 ¼ ��kk22 cosh �kk2L2; r11;8 ¼ ��kk22 sinh �kk2L2;

r11;9 ¼ �k21 cos k1L2; r11;10 ¼ �k21 sin k1L2; r11;11 ¼ k22 cosh k2L2; r11;12 ¼ k22 sinh k2L2;

Fig. 6. (a) Flutter and buckling capacity of column at different location of the piezoelectric layer at V ¼ 30. (b) First and second

frequencies of column for different locations of piezoelectric layer at V ¼ 30.
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r12;5 ¼ ��kk31 sin �kk1L2; r12;6 ¼ �kk31 cos �kk1L2; r12;7 ¼ ��kk32 sinh �kk2L2; r12;8 ¼ ��kk32 cosh �kk2L2;

r12;9 ¼ k31 sin k1L2; r12;10 ¼ �k31 cos k1L2; r12;11 ¼ k32 sinh k2L2; r12;12 ¼ k32 cosh k2L2;

�rr55 ¼ � cosh �kk1L1; �rr56 ¼ � sinh �kk1L1; �rr57 ¼ � cos �kk2L1; �rr58 ¼ � sin �kk2L1;

�rr65 ¼ ��kk1 sinh �kk1L1; �rr66 ¼ ��kk1 cosh �kk1L1; �rr67 ¼ �kk2 sin �kk2L1; �rr68 ¼ ��kk2 cos �kk2L1;

�rr75 ¼ ��kk21 cosh �kk1L1; �rr76 ¼ ��kk21 sinh �kk1L1; �rr77 ¼ �kk22 cos �kk2L1; �rr78 ¼ �kk22 sin �kk2L1;

Fig. 7. (a) Flutter and buckling capacity of column at V ¼ 30. (b) First and second frequencies of column at V ¼ 30.
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�rr85 ¼ ��kk31 sinh �kk1L1; �rr86 ¼ ��kk31 cosh �kk1L1; �rr87 ¼ ��kk32 sin �kk2L1; �rr88 ¼ �kk32 cos �kk2L1;

�rr95 ¼ � cosh �kk1L2; �rr96 ¼ � sinh �kk1L2; �rr97 ¼ � cos �kk2L2; �rr98 ¼ � sin �kk2L2;

�rr10;5 ¼ ��kk1 sinh �kk1L2; �rr10;6 ¼ ��kk1 cosh �kk1L2; �rr10;7 ¼ �kk2 sin �kk2L2; �rr10;8 ¼ ��kk2 cos �kk2L2;

�rr11;5 ¼ ��kk21 cosh �kk1L2; �rr11;6 ¼ ��kk21 sinh �kk1L2; �rr11;7 ¼ �kk22 cos �kk2L2; �rr11;8 ¼ �kk22 sin �kk2L2;

�rr12;5 ¼ ��kk31 sinh �kk1L2; �rr12;6 ¼ �kk31 cosh �kk1L2; �rr12;7 ¼ ��kk32 sin �kk2L2; �rr12;8 ¼ �kk32 cos �kk2L2:
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